10 เทรนด์เกิดใหม่ในระบบพลังงานด้านโทรคมนาคมภายในปี 2025

Share

Loading

Huawei คาดการณ์ 10 เทรนด์เกิดใหม่ที่กำลังจะกลายเป็นกระแสนิยมในเรื่องระบบพลังงานด้านโทรคมนาคม (Telecom Energy) ภายในปี ค.ศ. 2025 ซึ่งทาง Huawei เผยแพร่ออกมาไม่นานนี้ เพื่อเป็นข้อมูลอ้างอิงให้ผู้ให้บริการใช้สำหรับการวางโครงสร้างพื้นฐานของไซต์เครือข่ายหรือจุดกระจายสัญญาณของผู้ให้บริการนั่นเอง

เมื่อเทคโนโลยี 5G ที่กำลังจะมาถึง เครือข่ายโทรคมนาคมจึงจำเป็นต้องผ่านการเปลี่ยนแปลงครั้งสำคัญ 3 ประการ นั่นคือการทำความรู้จักคลื่นความถี่ใหม่และเทคโนโลยีใหม่ การเกิดไซต์เครือข่ายแห่งใหม่ๆ จำนวนมาก และเทคโนโลยี Mobile Edge Computing (MEC) กำลังจะหมดความสำคัญลง ขณะเดียวกัน เนื่องจากเทคโนโลยี 5G จะถูกนำไปประยุกต์ใช้กับหลากหลายภาคอุตสาหกรรม ดังนั้น เทคโนโลยีสารสนเทศ (IT) และเทคโนโลยีการสื่อสาร (CT) จะยิ่งซ้อนทับกันมากขึ้น และจะยิ่งใช้โครงสร้างพื้นฐานของเครือข่ายร่วมกันมากขึ้น ความเปลี่ยนแปลงเหล่านี้จะมีส่วนผลักดันระบบพลังงานด้านโทรคมนาคมได้อย่างไรบ้าง

1 การเปลี่ยนระบบพลังงานให้เป็นดิจิทัล (Energy Digitalization)

ร้อยละ 90 ของไซต์เครือข่ายสัญญาณทั่วโลกจะเปลี่ยนระบบพลังงานให้เป็นดิจิทัลด้วยการมาถึงของเทคโนโลยี 5G จำนวนของไซต์เครือข่ายจึงได้พุ่งสูงขึ้นอย่างรวดเร็ว งานด้านการเดินเครื่องและบำรุงรักษาก็ซับซ้อนยิ่งขึ้น ค่าใช้จ่ายในการดำเนินงานที่เพิ่มสูงขึ้นจะกลืนกินกำไรของผู้ให้บริการเครือข่าย การเปลี่ยนระบบพลังงานให้เป็นดิจิทัลสำคัญอย่างยิ่งต่อการทำให้งานด้านการเดินเครื่องและการบำรุงรักษาซับซ้อนน้อยลง รวมถึงการลดต้นทุนดังกล่าวในไซต์เครือข่ายให้น้อยลง

ด้วยเทคโนโลยีระบบสัมผัส ควบคุม และประมวลผลด้วยระบบดิจิทัล จึงคาดว่าร้อยละ 90 ของไซต์ทั่วโลกจะเปลี่ยนระบบพลังงานให้เป็นดิจิทัลภายในปี ค.ศ. 2025 และจะทำให้ผู้ให้บริการสามารถสร้างเครือข่ายขับเคลื่อนอัตโนมัติที่ไม่ซับซ้อนและเป็นมิตรต่อสิ่งแวดล้อมได้

2 การประยุกต์ใช้พลังงานสีเขียว (Green Energy) จะเพิ่มขึ้น

การประยุกต์ใช้พลังงานสีเขียวจะส่งเสริมการอนุรักษ์พลังงานและลดการปล่อยมลพิษเพื่อการพัฒนาอย่างยั่งยืนของอุตสาหกรรม เพื่อควบคุมปัญหาการเปลี่ยนแปลงของสภาพภูมิอากาศและเพื่อบรรลุเป้าหมายการพัฒนาอย่างยั่งยืน (Sustainable Development Goals หรือ SDGs) ของสหประชาชาติ ผู้ให้บริการเครือข่ายหลายรายทั่วโลกต่างใช้กลยุทธ์การประหยัดเชื้อเพลิง ลดการซ่อมบำรุง ใช้เครื่องกำเนิดไฟฟ้าเครื่องยนต์ดีเซลให้เป็นศูนย์ตลอดทั้งเครือข่าย ลดการปล่อยก๊าซคาร์บอน และมุ่งเน้นการพัฒนาอย่างยั่งยืน ด้วยเหตุนี้การลงทุนในพลังงานสีเขียวจึงเพิ่มขึ้นอย่างต่อเนื่อง เทคโนโลยีด้านพลังงานใหม่ เช่น พลังงานเซลล์แสงอาทิตย์ พลังงานลม เซลล์เชื้อเพลิงไฮโดรเจน และแบตเตอรี่ลิเทียม ล้วนกำลังเติบโต

แม้ว่าเทคโนโลยีเหล่านี้จะต้องใช้เม็ดเงินลงทุนเป็นปริมาณมากในเบื้องต้น แต่ก็เป็นที่ชื่นชอบของบรรดาผู้ให้บริการเครือข่ายมากขึ้นเรื่อยๆ เพราะประโยชน์ในตัวของเทคโนโลยีเหล่านี้เอง อย่างเช่น ความเป็นมิตรกับสิ่งแวดล้อม การปล่อยมลพิษต่ำ การไม่จำเป็นต้องดูแลรักษา และการใช้ต้นทุนด้านพลังงานไฟฟ้าที่ต่ำ เป็นต้น

3 แบตเตอรี่ลิเทียมจะมาแทนแบตเตอรี่ตะกั่ว-กรด

แบตเตอรี่แบบตะกั่ว-กรด (Lead-Acid Batteries) จะถูกแบตเตอรี่ลิเทียมแทนที่ และแบตเตอรี่จะถูกใช้เป็นแหล่งพลังงานหลักมากขึ้นเรื่อยๆ จากเดิมที่ถูกใช้เป็นพลังงานสำรองเนื่องจากเทคโนโลยี 5G กำลังพัฒนาไปอย่างรวดเร็ว ปริมาณการใช้ไฟฟ้าของไซต์ยิ่งทวีคูณ ดังนั้นจึงต้องการระบบการจัดเก็บพลังงานที่มีความหนาแน่นของพลังงานสูง และแบตเตอรี่ลิเทียมก็เป็นตัวเลือกที่สมบูรณ์แบบ ปัจจุบัน แบตเตอรี่ลิเทียมมีจำนวนรอบ (Cycle Life) มากกว่าแบตเตอรี่ตะกั่ว-กรดถึง 5 เท่า อายุการใช้งานสำหรับการชาร์จแบบโฟลท (Float Charge) ของแบตเตอรี่ลิเทียมนั้นมากกว่าแบตเตอรี่ตะกั่ว-กรดเป็น 2 เท่า  และต้นทุนวงจรอายุ (Life Cycle Cost) ของแบตเตอรี่ลิเทียมต่ำกว่าแบตเตอรี่ตะกั่ว-กรด ภายในอีก 3 ปีข้างหน้า ราคาของแบตเตอรี่ลิเทียมจะลดลงอีกกว่าร้อยละ 30 และคาดว่าราคาของแบตเตอรี่ลิเทียมจะลดลงมาเท่ากับแบตเตอรี่ตะกั่ว-กรดภายในปี ค.ศ. 2022

นอกจากนี้ ฟีเจอร์จำนวนรอบของแบตเตอรี่ลิเทียมสามารถใช้ประโยชน์ได้อย่างเต็มที่ การตัดยอดโหลด (Peak Shaving) ยังสามารถหลีกเลี่ยงการขยายกำลังการผลิตหลัก การสร้างใหม่ รวมถึงราคาค่าไฟฟ้าที่ไม่แน่นอนซึ่งทำให้เกิดอุปสรรคต่อการลดค่าไฟฟ้า ซึ่งฟีเจอร์ดังกล่าวนี้จะช่วยลดค่าใช้จ่ายด้านการก่อสร้างเครือข่ายและการให้บริการได้มากขึ้นไปอีก

4 ระบบพลังงานด้านโทรคมนาคมจะแทรกซึมเข้าไปในอีกหลากหลายอุตสาหกรรมจากการมาถึงของ 5G

โครงการระดับองค์กรขนาดใหญ่หลากหลายรูปแบบจะต้องการโซลูชั่นด้านการจ่ายไฟที่ยืดหยุ่นได้ เทคโนโลยี 5G จะนำอุปกรณ์สถานีฐานเข้าไปปรับใช้กับโครงการระดับองค์กรขนาดใหญ่หลากหลายรูปแบบ  เช่น ท่าเรือ เหมือง กำลังไฟฟ้า การคมนาคมขนส่ง หรือแม้แต่วิทยาลัย โรงพยาบาล และชุมชนต่างๆ

ทั้งนี้ การจะปรับใช้ได้กับหลากหลายสถานการณ์จะต้องใช้โซลูชั่นระบบพลังงานด้านโทรคมนาคมที่ยืดหยุ่นและหลากหลาย ซึ่งจะผลักดันระบบพลังงานด้านโทรคมนาคมให้เป็นดิจิทัล เป็นโมดูลาร์ และยืดหยุ่นได้

5 การหลอมรวมของการจ่ายพลังงานไฟฟ้าไอซีที

การหลอมรวมของไอซีทีต้องการโซลูชันด้านการจ่ายพลังงานไฟฟ้าที่หลากหลายความแพร่หลายของเทคโนโลยี 5G ทำให้การกลายเป็นข้อมูลข่าวสาร (Informatization) และปัญญาประดิษฐ์ (AI) เข้าไปบูรณาการอยู่ในทุกแง่มุมของสังคม ขณะนี้บริษัทไอทีหลายแห่งเริ่มใช้เครือข่ายการสื่อสารพัฒนาแอพพลิเคชั่นจำนวนมาก เป็นที่แน่ชัดแล้วว่าการหลอมรวมของไอซีทีคือกระแสอันไม่อาจหลีกเลี่ยงได้ การเปลี่ยนผ่านนี้ทำให้เกิดความต้องการอันหลากหลายต่อการจ่ายพลังงานไฟฟ้า และการแบ็คอัพไซต์เดิมและห้องเก็บอุปกรณ์

ระบบพลังงานด้านโทรคมนาคมจะต้องสนับสนุนการจ่ายพลังงานไฟฟ้า ช่วยสำรองกำลังไฟฟ้า การจัดการความร้อน การจัดการพื้นที่ และการจัดการเดินสายเคเบิลของอุปกรณ์ CT และอุปกรณ์ IT ทั้งยังจะต้องเผชิญกับอุปสรรคใหม่ๆ ในงานด้านการเดินเครื่องและการบำรุงรักษาอีกด้วย

6 การร่วมมือกับปัญญาประดิษฐ์ (AI Collaboration)

รูปแบบความร่วมมือระหว่าง NetEngine และ AI จะเกิดเป็นต้นทุนการเป็นเจ้าของ (TCO) ที่ดีที่สุดสำหรับเครือข่ายพลังงาน  การเพิ่มจำนวนของไซต์เครือข่าย 5G และการใช้พลังงานไฟฟ้ามากขึ้น นำไปสู่ต้นทุนด้านการเดินเครื่องและบำรุงรักษาและต้นทุนด้านพลังงานที่สูงลิ่ว เป็นอุปสรรคที่ขัดขวางไม่ให้เทคโนโลยี 5G แพร่หลายได้อย่างรวดเร็ว เทคโนโลยีความร่วมมือของ AI จะมีความสำคัญอย่างยิ่งต่อการแก้ปัญหานี้

การประยุกต์ใช้เทคโนโลยีนี้ในระบบพลังงานด้านโทรคมนาคมรวมถึงอัลกอริทึม AI ที่ออกแบบให้ใช้โครงร่างทรัพยากรของไซต์ให้เกิดประโยชน์สูงสุดสำหรับเครือข่ายแยกส่วน (Sliced Networks) รวมทั้งใช้ประสิทธิภาพด้านพลังงานและการวิเคราะห์ของ AI เพื่อสร้างเครือข่ายที่ขับเคลื่อนโดยอัตโนมัติ

7 เครือข่ายแบบครบวงจรที่มีความซับซ้อนน้อยลง (Full-Stack Simplified)

เครือข่ายพลังงานแบบครบวงจรจะมีความซับซ้อนน้อยลงในอนาคต การเชื่อมต่อจะครอบคลุมทุกหนแห่ง จะมีคลื่นความถี่ถูกนำมาใช้งานอีกเป็นจำนวนมาก และจะมีการสร้างไซต์เครือข่ายอย่างหนาแน่นมากขึ้นเรื่อยๆ ในยุคแห่ง 5G ระบบพลังงานต่างๆ นับจากไซต์ไปจนถึง Bearer Network และ Core Networks จะมีขนาดใหญ่และซับซ้อนขึ้นเรื่อยๆ ดังนั้นจึงจำเป็นจะต้องมีการทำให้ซับซ้อนน้อยลงและมีการควบคุมต้นทุนการเป็นเจ้าของ (TCO) ในอนาคต

เทคโนโลยีเครือข่ายพลังงานแบบครบวงจรที่มีความซับซ้อนน้อยลง อย่างเช่น มีตู้จัดเก็บอุปกรณ์ 1 ตู้ต่อ 1 ไซต์ มีเบลดสำหรับจ่ายพลังงาน 1 เบลดต่อ 1 ไซต์ และเครือข่ายขับเคลื่อนโดยอัตโนมัติ จะถูกนำไปใช้ในวงกว้าง ซึ่งจะเสริมสร้างศักยภาพของการติดตั้งไซต์และการขยายกำลังการผลิตได้เป็นอย่างมาก ทำให้งานด้านการเดินเครื่องและบำรุงรักษาระบบพลังงานมีความซับซ้อนน้อยลง และทำให้เครือข่ายพลังงานมีความซับซ้อนน้อยลงไปอีกได้

8 สถาปัตยกรรมหลายรูปแบบ (Multi-Pattern Architecture)

เนื่องจาก Input และ Output ด้านพลังงานจะมีความหลากหลาย การใช้สถาปัตยกรรมหลายรูปแบบจะกลายเป็นกระแสนิยม ปัจจุบันแหล่งจ่ายพลังงานไฟฟ้าส่วนใหญ่ไม่รองรับ Input และ Output หลายรูปแบบ อุปกรณ์แปลงพลังงานรูปแบบต่างๆ จะต้องถูกรวมเป็นระบบเดียว ซึ่งจะมีขนาดใหญ่ ศักยภาพต่ำ และต้องบำรุงรักษาในหลายส่วน

นอกจากนี้ ต้นทุนค่าอุปกรณ์และต้นทุนด้านการเดินเครื่องและการบำรุงรักษาต่างสูงลิ่ว สถาปัตยกรรมหลายรูปแบบจะมีความหนาแน่นและมีประสิทธิภาพของระบบที่สูงขึ้น ติดตั้งง่ายขึ้น มีการเดินเครื่องและบำรุงรักษาที่ชาญฉลาดขึ้น และคาดว่าจะใช้กันอย่างแพร่หลายในอุตสาหกรรมโทรคมนาคมพลังงานในอนาคต

9 ประสิทธิภาพที่สูงขึ้น

ประสิทธิภาพตัวเรียงกระแสวงจร (Rectifier) จะได้รับการพัฒนาให้ดีถึงขีดสุด ทุกฝ่ายจะให้ความสนใจในเรื่องประสิทธิภาพในระดับไซต์และระดับเครือข่ายมากยิ่งขึ้น ปัจจุบัน การพัฒนาประสิทธิภาพของระบบการจ่ายไฟฟ้าสำหรับโทรคมนาคมส่วนใหญ่ขึ้นอยู่กับตัวเรียงกระแสวงจร (Rectifier) ประสิทธิภาพตัวเรียงกระแสจากอุปกรณ์ของผู้จัดจำหน่ายโดยทั่วไปอยู่ที่ร้อยละ 90-98 ในอนาคตประสิทธิภาพสูงสุดจะได้รับการพัฒนาขึ้นไปอยู่ที่ร้อยละ 98-99 (หมายความว่าจะขาดทุนกับตัวเรียงกระแสวงจรน้อยลงร้อยละ 50)

อย่างไรก็ดี ส่วนใหญ่การใช้พลังงานของทั้งไซต์จะเกิดจากระบบกำเนิดพลังงาน ระบบควบคุมอุณหภูมิ และเส้นทางการจ่ายกระแสไฟฟ้า ผู้ให้บริการจะใส่ใจกับการปรับปรุงประสิทธิภาพพลังงานในระดับไซต์และระดับเครือข่ายกันมากขึ้น การแลกเปลี่ยนความร้อนอย่างมีประสิทธิภาพและการกระจายความร้อนด้วยธรรมชาติจะเข้ามาแทนที่เครื่องปรับอากาศและจะกลายเป็นวิธีหลักในการจัดการความร้อน

10 ความน่าเชื่อถือ

ความน่าเชื่อถือกลายเป็นส่วนประกอบสำคัญของพลังงานด้านโทรคมนาคมเทคโนโลยีปัญญาประดิษฐ์ได้ผลักดันพลังงานโทรคมนาคมให้พัฒนาจากไซต์เครือข่ายแบบแยกมาเป็นรูปแบบเครือข่ายพลังงาน ความหลากหลายของแหล่งพลังงานและความต้องการในด้านการสำรองกำลังไฟฟ้า รูปแบบการติดตั้งโปรเจกต์ที่ซับซ้อนยิ่งขึ้น และสภาพแวดล้อมในด้านเครือข่ายแบบดิจิทัลทำให้มาตรฐานที่ต้องการในเรื่องความน่าเชื่อถือของเครือข่ายพลังงานเพิ่มสูงขึ้น

เทคโนโลยีที่น่าเชื่อถือต่างๆ ทั้งในด้านความปลอดภัย ความเชื่อถือได้ การเข้าถึงได้ การรักษาความปลอดภัย ความเป็นส่วนตัว และความไว้วางใจได้ จะกลายเป็นคุณสมบัติสำคัญสำหรับเครือข่ายพลังงานที่มีความน่าเชื่อถือ

ขอขอบคุณแหล่งที่มา :

https://www.huawei.com/en/press-events/news/2020/2/huawei-10-emerging-trends-telecom-energy-next-5years